Reducing the Impacts of Extreme Precipitation Using Green Infrastructure: What's the Cost? An Economic Assessment

Hilarie Sorensen University of Minnesota Sea Grant

Minnesota: 7 Floods in 7 Years

Slide Courtesy: James Fallon, USGS MN Water Science Center

2007 Late Summer SE MN record 15inch rain

2008 June MN+IA Cedar River

2009 Spring Snowmelt Red River Basin

2010 Spring Snowmelt Red and MN Rivers

2010 Fall Southern MN 6-10 inches rain

2011 Spring Statewide

2012 June NE MN 6-10 inches rain

June 2012 Flood Event

Preceded by very wet May (one of wettest on record) 6-10 inches of rainfall June 19-20 Severe flash flooding region-wide Record river flooding for ~2 Weeks Estimated \$80-100 million damages

Blend of radar-based and ground-based data

Hydrographs show differing stream responses

Figure 5. Provisional stage hydrographs at selected U.S. Geological Survey streamgages in northeastern Minnesota for June 10 through July 29, 2012.

Railroads Economic impacts (tourism – MSP advertising, etc) Recovery time/cost – debris removal

Percent increases in the amount falling in the heaviest 1 percent of all daily events, 1958 to 2007. Credit: Updated from Groisman et al. 2005. J. Climate.

Stormwater Challenges

- Large
- Old
- Grade
- Soils C & D
- Bedrock

Reducing Future Damage

- Larger culverts
- Wood and vegetation
 - Green Infrastructure

Slide Courtesy: Chris Kleist, City of Duluth

Chester Creek Watershed

Ridge Axis Elevation ~1400 feet

53

Lake Level ~ 590 feet

Slide Courtesy: Chris Kleist, City of Duluth © 2012 Google © 2012 Cnes/Spot Image

Google earth

Image © 2012 TerraMetrics

Eye alt 2566 ft 🜔

Damage in Chester Creek from June 2012 Flood

CURRENT LAND COVER

Land Cover Source: Coastal Change Analysis Program (C-CAP) 2010

What Flooding Should We Expect?

Future Flood Events

Coastal Services Center Ople, Information, and technology

Future Precipitation

			2-yr	10-yr	100-
Scenar			storm*	storm	yr
io	Model	Year			storm
Warm	MRI	2035	8.49%	8.54	8.77
and				%	%
wet					

* This value is not generated by CREAT and was extrapolated using a log regression trend

NOAA Coastal Services Center LINKING PEOPLE, INFORMATION, AND TECHNOLOGY

GOAL:

20% Reduction in Peak Discharge How much <u>storage</u> is needed to reach this target?

Frequency Increase of Peak Discharges

Scenario:	% Chance 2 yr Peak Discharge*	% Chance 10 yr Peak Discharge	% Chance 100 yr Peak Discharge
Current Land use & Precipitation	50.00%		
Future Land Use & Precipitation	74.87%	14.95%	1.84%
Current Land Use & Precip with Storage**	34.00%	3.95%	0.24%
Future Land Use & Precip with Storage**	52.49%	7.00%	0.51% Final Report, Table 20
% Chance peak discharg ** Storage assumed to be conditions	e based on current disc e 20% of flow from curre	harge NOAA Coa ent	astal Services Center, INFORMATION, AND TECHNOLOGY

GOAL:

20% Reduction in Peak Discharge How much <u>storage</u> is needed to reach this target?

76 acre-feet (current conditions)

86 acre-feet (future conditions)

Damages: What We Estimated

- Damage to Structures (Hazus)
- Loss of Recreational Use
- Post Storm Land Restoration Costs
- Storm Sewer Infrastructure Costs

Change in Flooding

How does flooding change if the desired GI storage is implemented?

How We Did It

- Reduce previously calculated peak discharges by 20 % (USGS Regression equations)
- Input the new peak discharges into HEC-RAS to obtain flood depth grids
- Re-run Hazus with the new flood depth grids to see how damage changes

Current Precipitation, Current Land Use, 20% Flood Storage

The Results

- 38% fewer buildings damaged
- 27% monetary reduction in building damages

Future Precipitation, Future Land Use, 20% Flood Storage

- 27% fewer buildings damaged
- 16% monetary reduction in building damages

Potential Impacts/ Co-Benefits

- Transportation Infrastructure: roads, bridges, dams, drainage
- Water/wastewater infrastructure: CSOs, SSOs, sewage treatment, drinking water
- Water quality
 - Boating, swimming, fishing
- Recreation Are there use data?
 - Camping, hiking, birding, xc skiing?
- Increased property values
- Non-Market Values: ecosystem services, wildlife habitat, open space

Green Infrastructure/LID

PROTECT EXISTING FORESTS AND WETLANDS

Chester Creek Watershed is 19.2% wetland and 35.1% forest!

CREATE NEW NATURAL AREAS TO ABSORB FLOOD WATERS

Committed communities

Chester Creek GI/LID Options

selfridge Dr.

Souldet Dr

Saylis St-

© 2015 Google

Blue or Green Roof opportunity Plant Trees, Possible Storage curb cut bioretention?

Leave bridge out; remove road and restore

Trun -

Howtz St

ad Road Diet opportunity

Arlavia St

Lyons St

anege

N

0)

narrower road

Hawkins S

Plum St

re-meander stream section

green roof

Hickory St

Willow St

E Gilead St

Locust S

Olive St

90

N Basswood A

lat 46.813456° lon -92.111401° elev 1316 ft eye alt 12395 f

Factors influencing cost:	GI Practice	Capital Cost / CubiC foot storage	Annual O&M / cubiC foot storage
Site Hydrology	Bioswale	21.2	1.3
 Available open space Community preference 	Blue Roof	6.0	0.2
 Presence of underground obstructions 	Permeable Pavement	16.8	N/A
 Presence of natural features 	Underground Storage	41.3	1.3
	Retention Pond	2.9	0.0
	Detention Wetland	1.3	N/A

How Much Will it Cost?

If you implemented 76 acrefeet of extended detention wetlands at \$1.30/CF your total cost would be \$4,303,728

If you implemented 76 acrefeet of underground storage at \$41.30/CF your total cost would be \$136,726,128

What's the answer?

	Capital Cost per Cubic Foot of Flood Storage Provided (\$/CF)
Most Expensive \$\$\$\$	Underground Storage
	Bioretention
	Permeable Pavement
	Blue Roof
	Retention Pond
Least Expensive \$	Extended Detention Wetland

Co-Benefits of Green Infrastructure

- Recreational, educational, and other use
- Increased property values
- Ecological Benefits
- Improved water and air quality
- Improved neighborhood aesthetics

- Reduced damages to public infrastructure
- Roads, bridges, sidewalks
- Water and sewage treatment facilities

What can this mean for Duluth?

Duluth has science-based information to support planning, decisions, and future funding opportunities

LEARN THE ISSUES SCIENCE & TECHNOLOGY LAWS & REGULATIONS ABOUT EPA

WH Newsroom

IN' You are here: EPA Home » Newsroom » News Releases from Region 5 » Duluth receives U.S. EPA's first Grea

News Releases from Region 5

Duluth receives U.S. EPA's first Great Lakes Shoreline Cities Green Infrastructure Grant

14

Release	Table 50.18.1	E-4: Discharge Rate Limits		
rowan.a	Location	Post-Development Peak Flow Rates at Each Discharge Point Shall Not Exceed		
(DULUTI Great La quality in Great La	Type of Activity ▼	Zone A Above Bluff Line	Zone B Below Bluff Line	
EPA Reg Ness at t projects a os The State Authority	New Development	75% of predevelopment peak flow rates for 10 and 100 year events; and 90% of predevelopment peak flow rate for 2 year event	Predevelopment peak flow rates for all storm events	
"I'm plea	Redevelopment	Predevelopment peak flow rates for all storm events	Predevelopment peak flow rates for all storm events	

stormwater management projects that will improve water quality in the Lake Superior Basin."

Major Project Components

- <u>Climate Prediction</u>: How much precipitation in 2035 and 2060? ERG/HW (EPA's CREAT Model)
- <u>Hydrology and Hydraulics</u>: What is the resulting flood elevation and associated impacts for the biggest storms? Army Corps of Engineers
- <u>Flood Damage Estimate</u>: What is the cost of the damage caused? ASFPM (HAZUS)
- <u>Planning Options</u>: What can be done to minimize damages (i.e., adapt)? ERG/HW (Land Use Planning and Gray/Green Infrastructure)
- <u>Economic Analysis</u>: What are the costs and benefits of such adaptations? ERG/HW

Questions?

Hilarie Sorensen soren360@d.umn.edu 218-726-7677

http://coast.noaa.gov/digitalcoast/publications/climate-change-adaptation-pilot